

1. Overall Analysis

- Executive Summary
- Port Dwell Time Performance & Benchmarking
- Container Count (No. of boxes) & Container Volume (TEUs)
- JNPA Port Performance
- CFS/ICD Performance Benchmarking

2. Import Cycle Analysis

- Dwell Time Performance
- Congestion Analysis
- Container Movement Heat Map via Train and Truck
- Toll Plaza Analysis

3. Export Cycle Analysis

- Dwell Time Performance
- Congestion Analysis
- Container Movement Heat Map via Train
- 4. CFS and ICD Performance
- 5. Trend Analysis
- 6. Weather Analysis
- 7. Annexure

Overall Analysis

Executive Summary

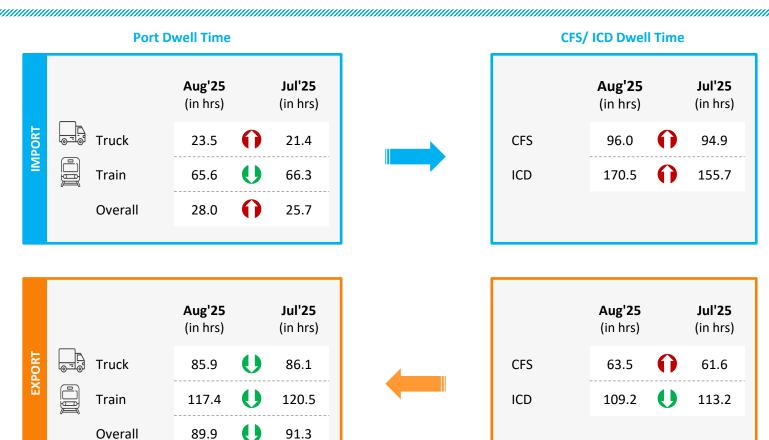
<u>Terminal wise Dwell Time Performance – Snapshot</u>

Import Cycle					
Port Terminals	Aug'25 (in hrs)	Jul'25 (in hrs)			
NSFT	25.9	23.0			
NSICT	38.2	24.7			
GTI	20.8	18.2			
NSIGT	32.1	28.2			
BMCT	26.1	22.2			
NSDT	21.1	30.0			

Export Cycle					
Port Terminals	Jul'25 (in hrs)				
NSFT	76.8	81.1			
NSICT	59.0	62.3			
GTI	80.7	80.4			
NSIGT	88.7	84.4			
BMCT	83.3	81.7			
NSDT	171.5	135.1			

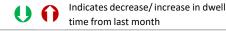
Critical Incident Summary Jawaharlal Nehru Port Authority

• Overall container handling performance (Port Dwell Time) has declined in import cycle and has improved in export cycle. CFS dwell Time performance has declined in both import and export cycle. ICD dwell performance has declined in import cycle and has improved in export cycle.


Month	Port Dwell Time Import	Port Dwell Time Export	CFS Dwell Time Import	CFS Dwell Time Export	ICD Dwell Time Import	ICD Dwell Time Export
Aug'25	26.8 hrs 👔	78.0 hrs 🕕	91.8 hrs 🎧	62.7 hrs 👔	170.5 hrs 👔	109.2 hrs 🕕
Jul'25	22.0 hrs ^{21.8%}	78.1 hrs ^{0.1%}	91.4 hrs ^{0.4%}	60.4 hrs ^{3.8%}	155.7 hrs ^{9.5%}	113.2 hrs ^{3.5%}

Indicates decrease/increase in dwell time from last month

Container Transportation Performance: Western Corridor



Container Lifecycle (Import Cycle)

Port Dwell Time CFS/ ICD Dwell Time

Container Lifecycle (Export Cycle)

Port Performance Benchmarking & Performance Index: Western Region

Performance benchmarking of terminals based on dwell time vis-à-vis container count (no. of boxes) handled:

High Potential

dwell time

Entities with low container count and low

Abb.	Name of Terminal
А	Adani CMA Mundra Terminal (ACMTPL)
В	Adani Hazira Port Private Limited (AHPPL)
С	Adani International Container Terminal (AICTPL)
D	Adani Mundra Container Terminal (AMCT)
E	Bharat Mumbai Container Terminals(PSA)
F	Gateway Terminals India (GTI)
G	APM Terminals Pipavav, Gujarat
Н	Nhava Sheva Freeport Terminal (NSFT)
I	Mundra International Container Terminal (MICT)
J	Nhava Sheva India Gateway Terminal (NSIGT)
K	Nhava Sheva International Container Terminal (NSICT)
L	Kandla International Container Terminal (KICT)
М	Adani Mundra Container Terminal-2 (AMCT-2)
N	NSDT Terminal

dwell time

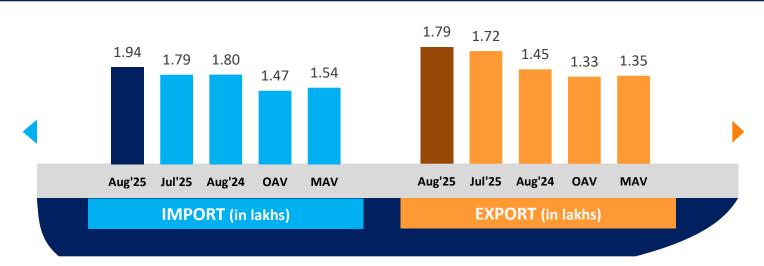
Y-Axis: No. of Boxes Threshold value (no. of boxes): 51,515

Slow Bulk Movers

this is the state of the

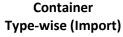
high dwell time

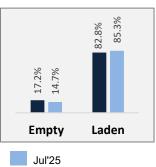
Needs Improvement

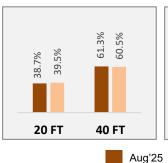

Entities with low container count

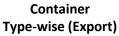
Entities with low container count and high dwell time

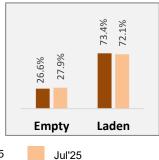
Container Count (No. of boxes): JNPA Port Terminals



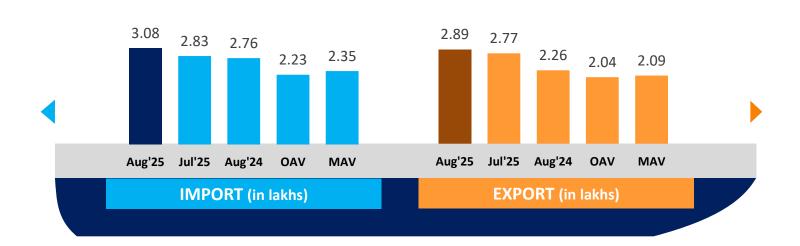







Container Count - Annual Average (in lakhs/ month)

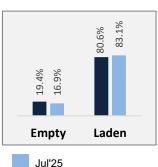
Container Size-wise (Export)


OAV - Overall Avg Volume MAV - Monthly Avg Volume

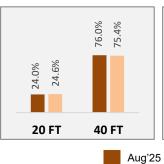
Note: All above figures are in no. of boxes

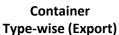
Container Volume (TEUs): JNPA Port Terminals

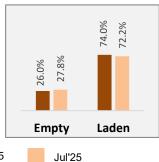
Jawaharlal Nehru Port Authority



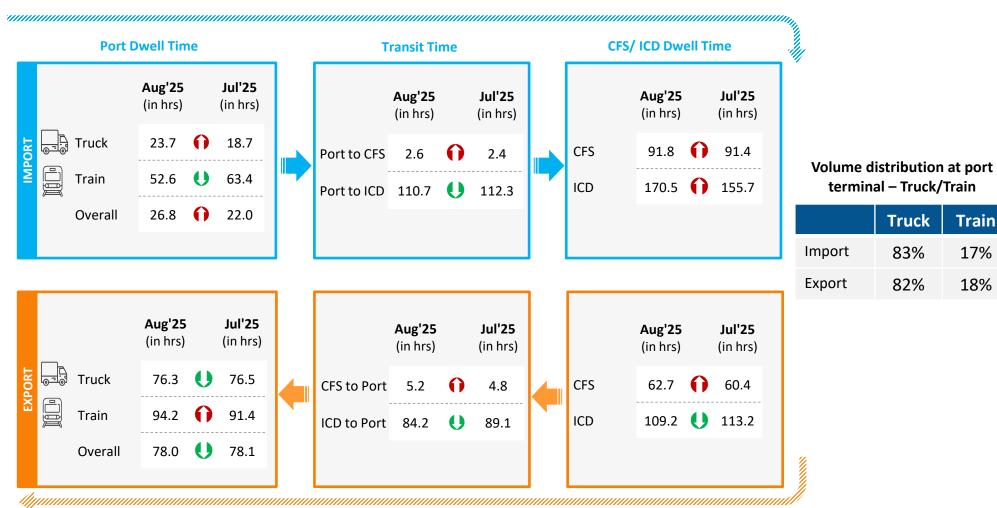
Container


Container Type-wise (Import)

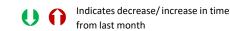



Container Volume (TEUs) - Annual Average (in lakhs/ month)

Container Size-wise (Export)


OAV - Overall Avg Volume MAV - Monthly Avg Volume

Note: All above figures are in TEUs


Container Transportation: JNPA Port Terminals

Container Lifecycle (Import Cycle)

Container Lifecycle (Export Cycle)

Container Transportation: JNPA Port Terminals

		Particulars	Aug'25 (in hrs)	Jul'25 (in hrs)
(I)		Overall Dwell Time	26.8	22.0
200	Dwell Time	Truck Bound Containers	23.7	18.7
S		Train Bound Containers	52.6	63.4
せ	Dwell Time	Direct Port Delivery (DPD) containers	24.6	20.1
od .		Containers bound for CFS	23.0	17.1
<u>E</u>		Empty Containers	41.3	38.3
		Laden Containers	24.3	20.0
	Transit Time	Port to ICD	110.7	112.3
	Transit Time	Port to CFS	2.6	2.4
		Particulars	Aug'25 (in hrs)	Jul'25 (in hrs)
		Particulars Overall Dwell Time		
cle			(in hrs)	(in hrs)
Cycle		Overall Dwell Time	(in hrs) 78.0	(in hrs) 78.1
rt Cycle	Dwell Time	Overall Dwell Time Truck Bound Containers	(in hrs) 78.0 76.3	(in hrs) 78.1 76.5
port Cycle	Dwell Time	Overall Dwell Time Truck Bound Containers Train Bound Containers	(in hrs) 78.0 76.3 94.2	(in hrs) 78.1 76.5 91.4
Export Cycle	Dwell Time	Overall Dwell Time Truck Bound Containers Train Bound Containers Direct Port Entry (DPE) containers	(in hrs) 78.0 76.3 94.2 75.2	(in hrs) 78.1 76.5 91.4 76.1
Export Cycle	Dwell Time	Overall Dwell Time Truck Bound Containers Train Bound Containers Direct Port Entry (DPE) containers Containers bound from CFS	(in hrs) 78.0 76.3 94.2 75.2 75.9	(in hrs) 78.1 76.5 91.4 76.1 74.5
Export Cycle	Dwell Time Transit Time	Overall Dwell Time Truck Bound Containers Train Bound Containers Direct Port Entry (DPE) containers Containers bound from CFS Empty Containers	(in hrs) 78.0 76.3 94.2 75.2 75.9 75.4	(in hrs) 78.1 76.5 91.4 76.1 74.5 78.4

© NICDC Logistics Data Services Limited —————————————————————Page 10

Parking Plaza Analysis: JNPA Port

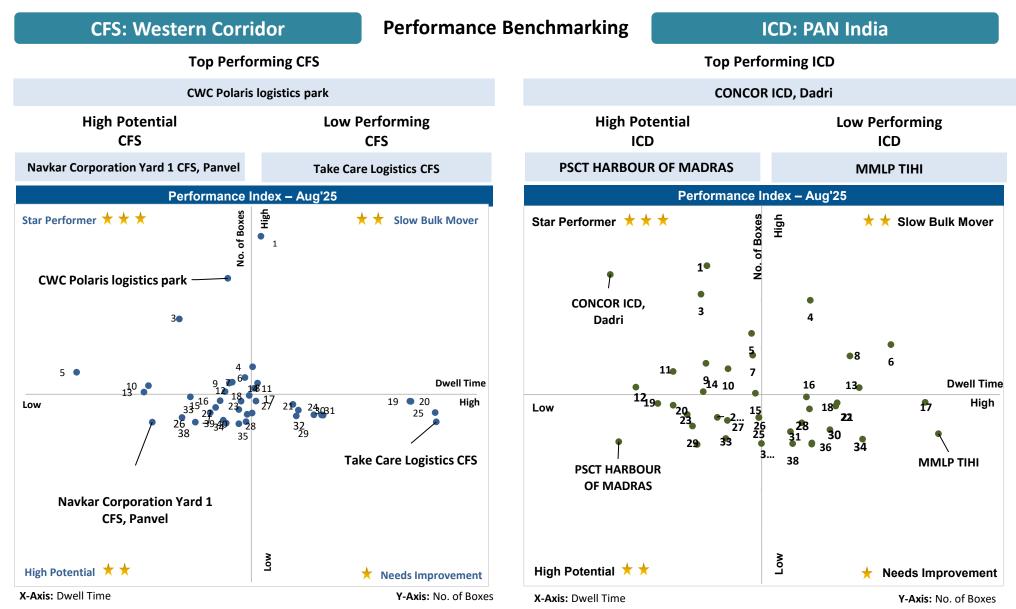
The analysis showcases waiting time of containers at parking plaza and transit time between parking plaza exit and port entry:

Parking Plaza Dwell Time	Aug'25 (in hrs)	Jul'25 (in hrs)	
Gate in - Gate Out	5.8	5.7	

Container Count Percentage: Hour-wise (Aug'25)

	Within 2 hrs	2-4 hrs	4-8 hrs	8-16 hrs	16-24 hrs	More that 24 hrs	n
Parking Plaza Dwell Time	9%	23%	34%	23%	7%	4%	

Parking Plaza to JNPA	Aug'25	Jul'25
Port	(in hrs)	(in hrs)
Gate Out – Terminal In	2.4	1.9


Port Terminal	Aug'25 (in hrs)	Jul'25 (in hrs)
NSFT	1.3	0.5
NSICT	5.2	2.8
GTI	1.0	1.1
NSIGT	1.8	2.4
BMCT	4.5	5.7
NSDT	-	-

Container Count Percentage: Hour-wise (Aug'25)

Parking Plaza to Port Terminal	Within 1 hrs	1-2 hrs	2-3 hrs	3-4 hrs	4-5 hrs	More than 5 hrs
NSFT	44%	18%	10%	7%	7%	14%
NSICT	6%	9%	12%	12%	9%	52%
GTI	51%	26%	15%	5%	1%	2%
NSIGT	28%	26%	16%	10%	9%	11%
вмст	2%	12%	16%	14%	12%	44%
NSDT	-	-	-	-	-	-

CFS/ICD Performance Benchmarking & Performance Index

Import Cycle Analysis

JNPA Port Terminal: Dwell Time Performance (Import Cycle)

The below tables depict the port dwell time performance at JNPA port (covered under LDB) for train and truck bound containers in import cycle.

PORT IMPORT via TRAIN (17% of total import container volume)

The port dwell time data for train bound container movement in import cycle is depicted below. Port dwell time is the time duration between the entry of the container in port terminal to the time it moves out of the port terminal

Import Cycle					
Port Terminals	Aug'25 (in hrs)	Jul'25 (in hrs)			
NSFT	55.2	50.0			
NSICT	52.6	56.4			
GTI	48.8	54.0			
NSIGT	60.8	79.6			
BMCT	52.7	70.8			
NSDT	-	-			

Container Handled: Hour-wise (Aug'25)

Port Terminal	s Within 0-24 hrs	24-48 h	rs 48-72 h	nrs 72-96 l	nrs 96-144	More than
NSFT	16%	26%	25%	12%	9%	12%
NSICT	19%	27%	18%	11%	13%	12%
GTI	23%	26%	22%	11%	10%	8%
NSIGT	17%	24%	16%	14%	14%	15%
вмст	20%	26%	20%	14%	11%	9%
NSDT	-	-	-	-	-	-

PORT IMPORT via TRUCK (83% of total import container volume)

The port dwell time data for truck bound container movement in import cycle is depicted below. Port dwell time is the time duration between the entry of the container in port terminal to the time it moves out of the port terminal

Import Cycle					
Port Terminals	Aug'25 (in hrs)	Jul'25 (in hrs)			
NSFT	22.1	18.6			
NSICT	35.6	21.7			
GTI	18.4	15.7			
NSIGT	29.3	24.4			
BMCT	22.5	18.2			
NSDT	21.1	30.0			

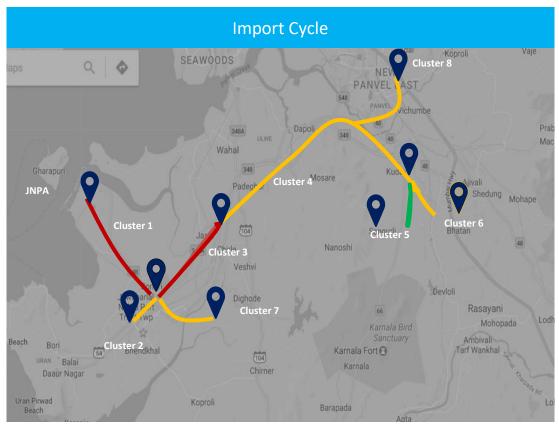
Container Handled: Hour-wise (Aug'25)

Port Terminal	within 0-24 hrs	24-48 h	rs 48-72 h	nrs 72-96 h	nrs 96-144	More than 144 hrs
NSFT	54%	29%	9%	4%	3%	1%
NSICT	34%	27%	15%	8%	7%	9%
GTI	62%	25%	8%	3%	2%	-
NSIGT	40%	34%	15%	6%	4%	1%
вмст	53%	28%	12%	5%	1%	1%
NSDT	55%	30%	4%	3%	-	8%

JNPA Port Terminal: Dwell Time Performance (Import Cycle)

The below table depicts the detailed JNPA region port performance in the month of Aug'25

Port Dwell Time (in Hours) - Based on Transit Type


Port Terminals	Direct Port Delivery (DPD) Containers- Truck	Containers bound for CFS	Empty Containers	Laden Containers
NSFT	22.1	18.6	38.5	21.7
NSICT	64.4	33.2	74.2	32.4
GTI	44.3	17.0	37.3	19.4
NSIGT	59.2	28.7	39.6	29.3
вмст	21.6	22.2	34.7	24.8
NSDT	-	20.7	-	21.1

Note: Direct Port Delivery (DPD) via train doesn't occur currently

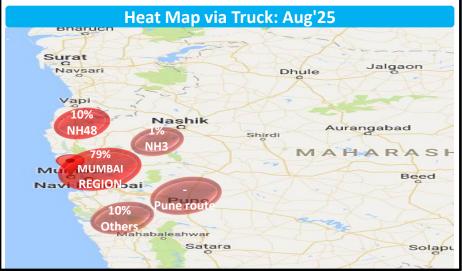
JNPA Region: Congestion Analysis (Import Cycle)

The below map indicates congestion around JNPA region in Import Cycle in month of Aug'25

Cluster	Cluster Name	No. of CFS	% of Total Containers	Congestion
Cluster 1	JNPA Area	1	9.15%	High
Cluster 2	Bhendkhal Area, Khopate Road	6	34.69%	Medium
Cluster 3	Sonari Area,JNPA Road	2	14.99%	High
Cluster 4	Chirle Area, JNPA Road	1	0.95%	Medium
Cluster 5	Plaspa Area, Coach Kanyakumari Highway	2	10.79%	Low
Cluster 6	Salva Apta Road Area, Bangalore Highway	5	19.55%	Medium
Cluster 7	Patilpada Area, Khopate JNPA Road	3	9.79%	Medium
Cluster 8	Taloja, Navi Mumbai	1	0.09%	Medium

Congestion Level High Medium Low

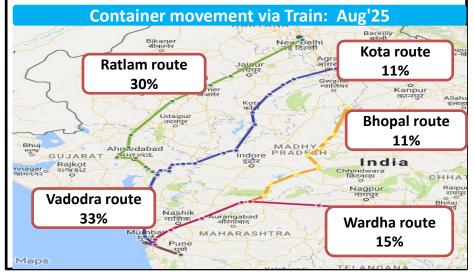
JNPA Region Import Cycle: Container Movement



Truck

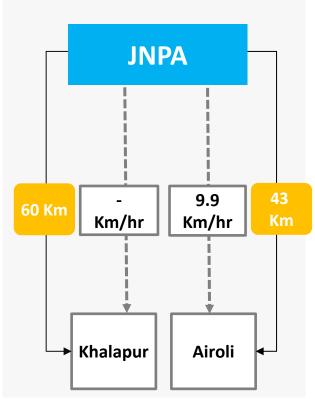
HEAT MAP: OVERALL MUMBAI REGION

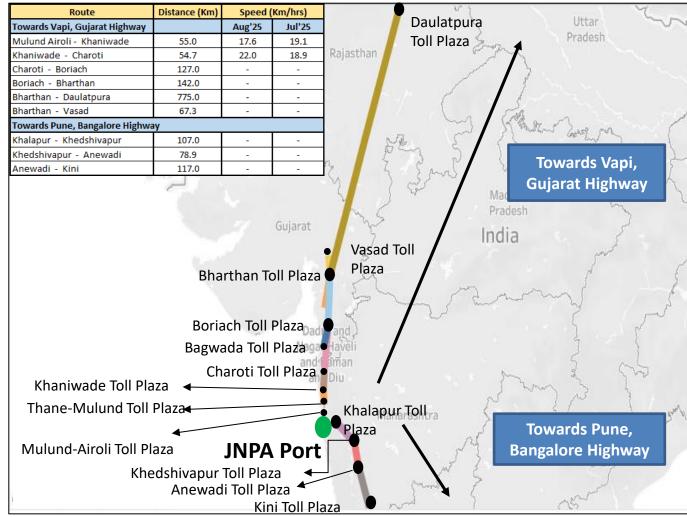
Region	Aug'25
Mumbai region	79%
NH3	1%
Pune	-
NH48	10%
Others	10%


The map depicts the movement of containers via truck in and around Mumbai region.

Train VOLUME WISE CONTAINER MOVEMENT

Region	Aug'25
Vadodra Route	33%
Ratlam Route	30%
Wardha Route	15%
Kota Route	11%
Bhopal Route	11%


The map depicts the volume wise container movement through different railway routes in import cycle


Western Corridor Toll Plaza Analysis

Average speed of trucks to cover the distance between Port to the nearest Toll Plaza for Aug'25:

The average speed of trucks to cover the distance between adjacent toll plazas for Aug'25:

Export Cycle Analysis

JNPA Port Terminal: Dwell Time Performance (Export Cycle)

The below tables depict the port dwell time performance at JNPA port (covered under LDB) for train and truck bound containers in export cycle.

PORT EXPORT via TRAIN (18% of total export container volume)

The port dwell time data for train bound container movement in export cycle is depicted below. Port dwell time is the time duration between the entry of the container in port terminal to the time it moves out of the port terminal

Export Cycle					
Port Terminals	Aug'25 (in hrs)	Jul'25 (in hrs)			
NSFT	129.2	100.7			
NSICT	20.5	19.9			
GTI	107.5	103.4			
NSIGT	111.0	101.1			
BMCT	118.3	110.4			
NSDT	-	-			

Container Handled: Hour-wise (Aug'25)

Port Terminal	Within 0-24 hrs	24-48 h	rs 48-72 h	nrs 72-96 h	nrs 96-144	More than 144 hrs
NSFT	13%	7%	10%	9%	16%	45%
NSICT	52%	10%	8%	8%	11%	11%
GTI	2%	9%	14%	16%	31%	28%
NSIGT	2%	9%	11%	16%	31%	31%
ВМСТ	1%	10%	12%	13%	24%	40%
NSDT	-	-	-	-	-	-

PORT EXPORT via TRUCK (82% of total export container volume)

The port dwell time data for truck bound container movement in export cycle is depicted below. Port dwell time is the time duration between the entry of the container in port terminal to the time it moves out of the port terminal

Export Cycle					
Port Terminals	Aug'25 (in hrs)	Jul'25 (in hrs)			
NSFT	73.4	79.4			
NSICT	63.9	67.6			
GTI	77.6	77.6			
NSIGT	85.7	82.2			
BMCT	79.5	76.9			
NSDT	171.5	134.5			

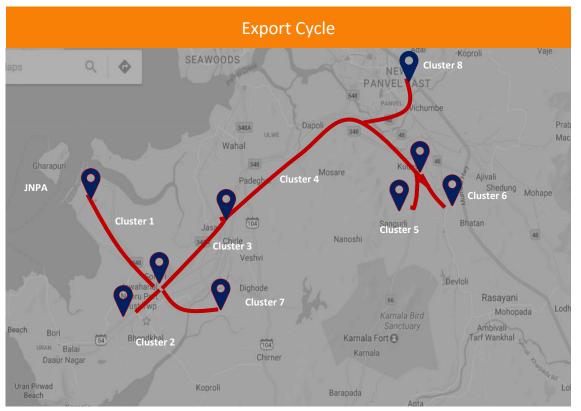
Container Handled: Hour-wise (Aug'25)

Port Terminals	Within 0-24 hrs	24-48 h	rs 48-72 h	rs 72-96 h	ors 96-144 h	More than 144 hrs
NSFT	7%	18%	24%	20%	19%	12%
NSICT	7%	24%	29%	21%	17%	2%
GTI	3%	15%	27%	25%	28%	2%
NSIGT	5%	8%	22%	25%	31%	9%
вмст	5%	15%	23%	23%	27%	7%
NSDT	8%	-	-	-	10%	82%

JNPA Port Terminal: Dwell Time Performance (Export Cycle)

The below table depicts the detailed JNPA region port performance in the month of Aug'25

Port Dwell Time (in Hours) - Based on Transit Type

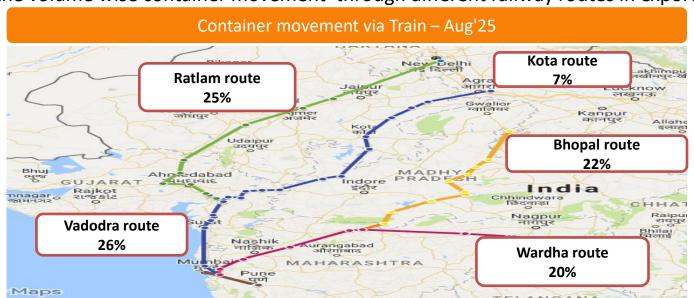

Port Terminals	Direct Port Entry (DPE) Containers- Truck	Containers bound from CFS	Empty Containers	Laden Containers
NSFT	70.9	78.3	69.6	77.2
NSICT	65.1	63.0	61.0	58.7
GTI	79.4	75.3	77.7	82.4
NSIGT	87.9	84.3	84.9	90.0
вмст	-	83.8	73.5	92.0
NSDT	-	155.2	-	171.5

Note: Direct Port Entry (DPE) via train doesn't occur currently

JNPA Region: Congestion Analysis (Export Cycle)

The below map indicates congestion around JNPA region in Export Cycle in month of Aug'25

Cluster	Cluster Name	No. of CFS	% of Total Containers	Congestion
Cluster 1	JNPA Area	1	3.51%	High
Cluster 2	Bhendkhal Area, Khopate Road	6	28.17%	High
Cluster 3	Sonari Area,JNPA Road	2	18.32%	High
Cluster 4	Chirle Area, JNPA Road	1	3.97%	High
Cluster 5	Plaspa Area, Coach Kanyakumari Highway	2	13.62%	High
Cluster 6	Salva Apta Road Area, Bangalore Highway	5	23.08%	High
Cluster 7	Patilpada Area, Khopate JNPA Road	3	9.30%	High
Cluster 8	Taloja, Navi Mumbai	1	0.03%	High


Congestion Level High Medium Low

JNPA Region: Container Movement via Train

JNPA Port		
Route	Percentage of Container Movement	
Vadodra Route	26%	
Ratlam Route	25%	
Wardha Route	20%	
Kota Route	7%	
Bhopal Route	22%	

The map depicts the volume wise container movement through different railway routes in export cycle for Aug'25

CFS and ICD Performance

CFS Performance

JNPA region CFS: CFS DWELL TIME ANALYSIS

Below tables show the dwell time of the respective CFSs for Aug'25 and Jul'25

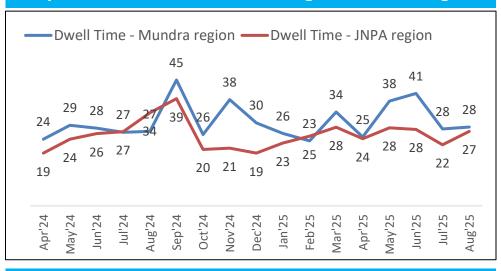
CFS	Aug'25 (in hrs)	Jul'25 (in hrs)	CFS	Aug'25 (in hrs)	Jul'25 (in hrs)
AllCargo Logistics CFS, Mumbai	92.9	92.0	JWR CFS	60.4	58.4
Ameya Logistics CFS, Navi Mumbai	88.6	87.1	Kerry Indev Logistics CFS, Mumbai	81.9	-
APM (Maersk India) CFS, Navi Mumbai	99.6	96.9	Maersk Annex (APM)CFS, Navi Mumbai	100.2	80.1
Apollo Logisolutions CFS, Panvel	91.1	93.6	Maharashtra State Corp CFS	92.2	98.7
Ashte Logistics CFS, Panvel	90.2	90.4	·		
Balmer & Lawrie CFS, Navi Mumbai	100.6	99.5	Navkar Corporation Yard 1 CFS, Panvel	74.1	74.1
Continental Warehousing CFS, Navi Mumbai	85.6	-	Navkar Corporation Yard 2 CFS, Panvel	104.8	99.3
CWC Conex Terminal CFS	79.0	79.6	Navkar Corporation Yard 3 CFS, Panvel	86.4	93.4
CWC Dronagiri CFS, Navi Mumbai	72.6	83.9	Ocean Gate CFS, Panvel	103.4	93.9
CWC Impex Park CFS, Navi Mumbai	105.1	94.6	Punjab Conware CFS, Navi Mumbai	88.1	93.7
CWC Polaris logistics park	87.8	87.2	Sarveshwar CFS	91.3	81.8
EFC Logistics India	87.3	76.8	Seabird CFS, Navi Mumbai	73.4	74.4
Gateway Distriparks CFS, Navi Mumbai	92.3	90.5	·		
International Cargo Terminal CFS	81.0	75.6	Speedy Multimode CFS, JNPT	92.6	92.7
international Cargo Terminal CF3	81.0	73.0	Take Care Logistics CFS	125.6	101.0
International Cargo Terminals (ULA) CFS, Navi Mumbai	90.9	81.1	Transworld Terminals CFS, Mumbai	84.6	82.5
JWC Logistics Park CFS	91.7	90.4	Vaishno Logistics CFS, Navi Mumbai	87.5	93.7

ICD Performance

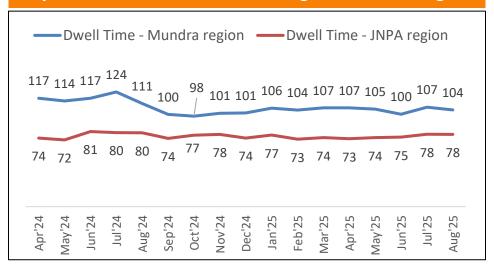
Below tables show the dwell time of the respective ICDs for Aug'25 and Jul'25

ICD Dwell Time (in hrs.)

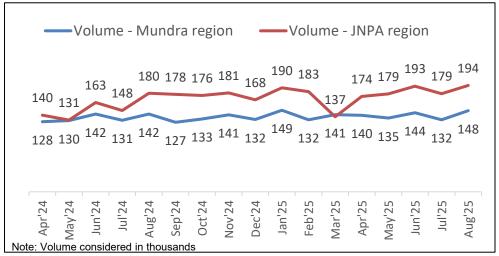
ICD	Aug'25 (in hrs)	Jul'25 (in hrs)	ICD	Aug'25 (in hrs)	Jul'25 (in hrs)
Adani ICD, Tumb	91.5	86.4	ICD Powarkheda	95.9	114.0
Adani Logistics Park ICD, Gurgaon	124.4	-	ICD Sachana (CWC)	146.8	142.7
CFS VALLARPADAM	123.3	163.6	ICD SANATHNAGAR	120.0	114.2
CONCOR ICD, Dadri	57.3	58.9	ICD WHITEFIELD	146.1	148.1
CONCOR Kanakpura ICD, Jaipur	109.6	94.8	KLPL ICD, Kanpur	123.2	113.0
CONTAINER CORPORATION OF INDIA LTD - TONDIARPET (ICDTVT-T)	85.2	74.0	Kribhco ICD, Meerut	167.8	152.0
Continental Warehousing Corporation Nhava Sheva Ltd ICD,Haryana	145.7	125.8	MMLP AHMEDGARH (PLIL)	169.3	-
Dronagiri Rail Terminal CFS, Navi Mumbai	100.2	109.2	MMLP BALLI	146.7	122.2
Gateway Rail ICD, Sahnewal	120.5	115.8	MMLP BARHI	157.4	166.0
Hind Terminals Logistics Park ICD, Palwal	142.3	157.5	MMLP KHATUWAS	121.7	133.9
HTPL ICD Qilaraipur Ludhiana	181.9	158.4	MMLP MIHAN	144.4	143.6
ICD ANKLESHWAR	98.6	94.4	MMLP PANTHNAGAR (SIDCUL-CONCOR)	108.6	-
ICD BGKT, JODHPUR	78.4	94.4	MMLP TIHI	203.0	209.8
ICD DAULATABAD	137.3	132.7	MMLP VARNAMA	197.1	171.4
ICD DDL, LUDHIANA	68.7	76.3	MMLP VISHAKAPATNAM	104.8	78.4
ICD KANPUR	93.8	102.1	Pegasus Inland Container Depot	154.8	123.9
ICD KHODIYAR	97.6	97.1	PSCT HARBOUR OF MADRAS	61.1	-
ICD KIFTPL Kashipur	138.3	-	The Thar Dry Port ICD Ahmedabad	163.7	148.7
ICD MANDIDEEP	158.0	162.5	The Thar Dry Port Jodhpur	109.3	100.1
ICD Pali (KIPL)	99.8	91.2	Vaishno Container Terminal-ICD Tarapur	85.2	102.8

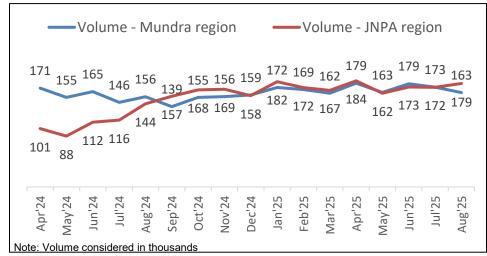

Trend Analysis

Western Corridor Port: Yearly Analysis



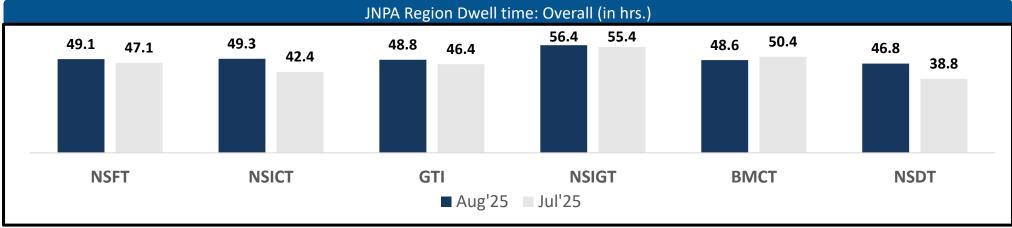
Container Volume and Dwell time of all the terminals in JNPA and Mundra Port have been analysed until Aug'25

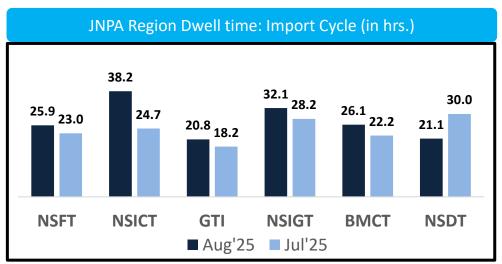

Import Dwell Time – Mundra Region Vs JNPA Region

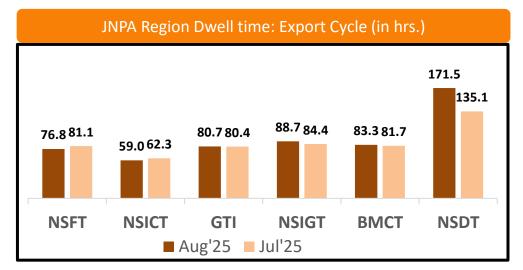

Export Dwell Time – Mundra Region Vs JNPA Region

Import Volume – Mundra Region Vs JNPA Region

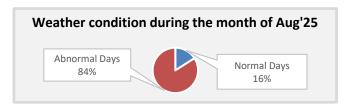
Export Volume – Mundra Region Vs JNPA Region


JNPA Port Dwell Time Trend: Month on Month


JNPA Port Dwell Time Trend:


The below graph shows the overall port dwell time (i.e. import and export cycle combined) trend (Month of Month) of all the JNPA port terminals. Port

The below graphs showcase the Import and Export cycle dwell time for both train and truck bound containers for month of Aug'25



Weather Analysis

Weather Analysis: JNPA Port

This component depicts container handling performance in various weather conditions, focusing on port dwell time.

- Normal Weather Conditions includes clear sky, sunny, overcast and partially cloudy weather
- Abnormal Weather Conditions includes rainy and overcast rainy weather

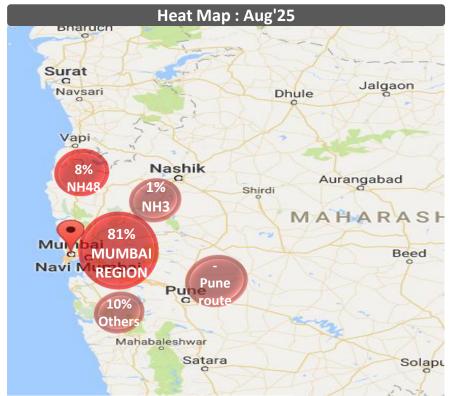
IMPORT CYCLE EXPORT CYCLE -13% **Dwell Time Dwell Time** (in hrs.) (in hrs.) 29.8 26.3 71.7 79.6 Aug'25 Aug'25 **Normal Weather Abnormal Weather Normal Weather Abnormal Weather** Volume Volume 84% 16% 83% 17% % share % share 6% ‡ 45% **Dwell Time Dwell Time** Yearly Yearly (in hrs.) (in hrs.) 20.5 29.8 (Jan'24 (Jan'24 to to **Normal Weather Abnormal Weather Normal Weather Abnormal Weather** Dec'24) Dec'24) Volume Volume 68% 32% 34% 66% % share % share Indicates increase/decrease in dwell time in abnormal weather compared to Note: Port dwell time is based on the daily weather condition at Port Out time

© NICDC Logistics Data Services Limited —————————————————————Page 31

Weather Analysis: JNPA Port (Terminal-wise)

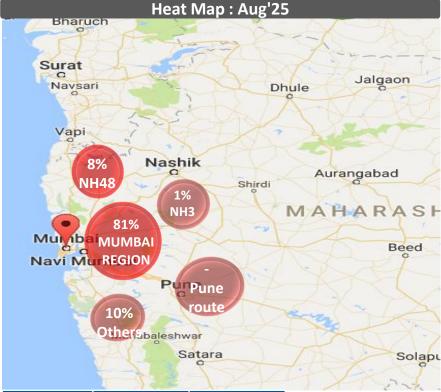
IMPORT CYCLE			
Terminal Name	Normal Weather Aug'25 (in hrs)	Abnormal Weather Aug'25 (in hrs)	
Nhava Sheva Freeport Terminal (NSFT)	27.4	25.3	
Nhava Sheva International Container Terminal (NSICT)	35.7	39.0	
Gateway Terminals India (GTI)	24.0	20.6	
Nhava Sheva India Gateway Terminal (NSIGT)	43.1	30.5	
Bharat Mumbai Container Terminals(PSA)	25.9	26.0	
Nhava Sheva Distribution Terminal (NSDT)	59.4	20.1	

EXPORT CYCLE			
Terminal Name	Normal Weather Aug'25 (in hrs)	Abnormal Weather Aug'25 (in hrs)	
Nhava Sheva Freeport Terminal (NSFT)	75.7	78.1	
Nhava Sheva International Container Terminal (NSICT)	53.0	59.7	
Gateway Terminals India (GTI)	72.6	83.0	
Nhava Sheva India Gateway Terminal (NSIGT)	87.5	89.4	
Bharat Mumbai Container Terminals(PSA)	73.9	85.1	
Nhava Sheva Distribution Terminal (NSDT)	-	171.5	



ANNEXURE

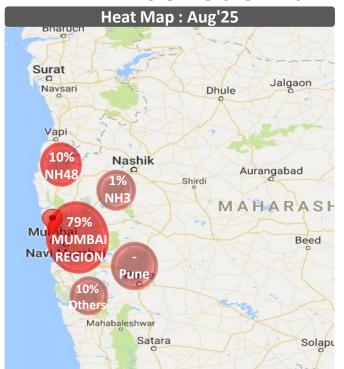
Container Movement Around JNPA Port Terminal Region Via Truck NLDS


HEAT MAP: GTI Port Terminal

Region	Aug'25	Jul'25
Mumbai region	81%	79%
NH3	1%	1%
Pune	-	-
NH48	8%	10%
others	10%	10%

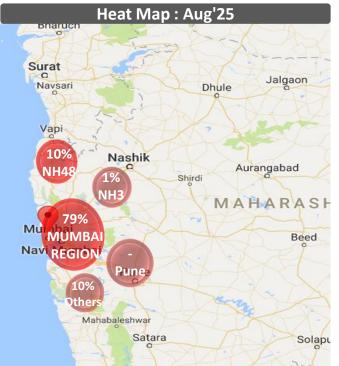
The heat map above depicts the of movement containers in and around the Mumbai region.

HEAT MAP: NSFT Port Terminal


Region	Aug'25	Jul'25	
Mumbai region	81%	80%	
NH3	1%	1%	
Pune	-	-	
NH48	8%	9%	
others	10%	10%	

The heat map above depicts the of movement containers in and around the Mumbai region.

Container Movement Around JNPA Port Terminal Region Via Truck


HEAT MAP: NSIGT Port Terminal

Region	Aug'25	Jul'25
Mumbai region	79%	77%
NH3	1%	1%
Pune	-	-
NH48	10%	12%
others	10%	10%

The heat map above depicts the movement of containers in and around the Mumbai region.

HEAT MAP: NSICT Port Terminal

Region	Aug'25	Jul'25
Mumbai region	79%	78%
NH3	1%	1%
Pune	-	-
NH48	10%	11%
others	10%	10%

The heat map above depicts the movement of containers in and around the Mumbai region.

HEAT MAP: BMCT Port Terminal

Heat Map	o : Aug'25
Surat	Jalgaon Jalgaon
Vapi	Dhule
NH48 Nashik	Aurangabad Shirdi
78% Muliba	MAHARAS
Nav REGION - Pune	Beed
10% Others Mahabaleshwar	and in
Satara	Sola

Region	Aug'25	Jul'25
Mumbai region	78%	80%
NH3	1%	1%
Pune	-	-
NH48	11%	9%
others	10%	10%

The heat map above depicts the movement of containers in and around the Mumbai region.

CFS Delivery Time Analysis: JNPA Terminals to CFS (1/2)

Port Out – CFS In (Import Cycle) – Aug'25 (in hrs): Below table shows the delivery time in import cycle from the PORT terminals to CFSs

	, , , , , , , , , , , , , , , , , , , ,					
CFS	NSFT	GTI	NSICT	NSIGT	вмст	NSDT
AllCargo Logistics CFS, Mumbai	4.2	3.4	3.9	4.2	3.6	-
Ameya Logistics CFS, Navi Mumbai	2.6	2.7	2.8	2.9	2.6	-
APM (Maersk India) CFS, Navi Mumbai	2.0	2.3	1.9	2.0	2.0	-
Apollo Logisolutions CFS, Panvel	4.5	4.8	5.7	4.3	4.5	-
Ashte Logistics CFS, Panvel	3.1	2.8	2.9	2.8	2.7	2.0
Balmer & Lawrie CFS, Navi Mumbai	2.6	2.4	2.0	1.9	2.0	1.8
Continental Warehousing CFS, Navi Mumbai	2.0	1.9	2.1	1.8	1.6	-
CWC Conex Terminal CFS	2.3	2.4	2.7	2.4	2.1	2.7
CWC Dronagiri CFS, Navi Mumbai	2.5	2.2	2.0	2.9	2.0	1.2
CWC Impex Park CFS, Navi Mumbai	2.7	2.8	2.7	2.8	3.2	-
CWC Polaris logistics park	2.1	2.2	2.5	2.0	2.0	1.8
EFC Logistics India	1.7	2.5	2.2	2.3	2.0	-
Gateway Distriparks CFS, Navi Mumbai	3.6	3.3	3.5	2.8	2.5	-
International Cargo Terminal CFS	2.0	2.3	2.5	2.3	2.1	-
International Cargo Terminals (ULA) CFS, Navi Mumbai	2.2	2.4	2.2	1.9	2.0	-
JWC Logistics Park CFS	2.1	2.8	4.7	3.4	3.1	-

CFS Delivery Time Analysis: JNPA Terminals to CFS (2/2)

Port Out – CFS In (Import Cycle) – Aug'25 (in hrs): Below table shows the delivery time in import cycle from the PORT terminals to CFSs

			•	• •		
CFS	NSFT	GTI	NSICT	NSIGT	вмст	NSDT
JWR CFS	4.4	4.3	10.5	2.9	4.4	-
Kerry Indev Logistics CFS, Mumbai	3.6	3.7	3.6	2.7	3.6	5.6
Maersk Annex (APM)CFS, Navi Mumbai	2.6	2.2	2.2	1.7	2.1	-
Maharashtra State Corp CFS	3.1	2.6	2.1	2.6	1.9	-
Navkar Corporation Yard 1 CFS, Panvel	4.5	2.6	3.4	3.1	3.5	1.9
Navkar Corporation Yard 2 CFS, Panvel	3.2	3.7	4.7	4.0	3.9	-
Navkar Corporation Yard 3 CFS, Panvel	2.9	3.4	4.3	3.3	3.5	1.7
Ocean Gate CFS, Panvel	3.5	3.2	3.5	3.2	3.1	-
Punjab Conware CFS, Navi Mumbai	1.6	2.0	1.9	2.2	1.8	-
Sarveshwar CFS	2.4	2.8	3.6	2.6	2.7	-
SBW Logistics CFS, Navi Mumbai	3.5	4.4	6.4	3.7	3.7	-
Seabird CFS, Navi Mumbai	4.9	4.6	4.5	4.0	4.4	-
Speedy Multimode CFS, JNPT	1.6	1.8	1.9	1.7	1.8	-
Take Care Logistics CFS	3.0	4.3	3.2	3.4	3.4	-
Transworld Terminals CFS,Mumbai	1.4	1.5	1.7	1.5	1.5	1.2
Vaishno Logistics CFS, Navi Mumbai	2.1	3.3	2.3	3.0	2.0	

CFS Delivery Time Analysis: CFS to JNPA Terminals (1/2)

CFS Out – Port In (Export Cycle) – Aug'25 (in hrs): Below table shows the delivery time in export cycle from the CFSs to PORT terminals

· · · · · · · · · · · · · · · · · · ·	-,		•	, ,		
CFS	NSFT	GTI	NSICT	NSIGT	вмст	NSDT
AllCargo Logistics CFS,Mumbai	4.2	3.4	3.9	4.2	3.6	-
Ameya Logistics CFS, Navi Mumbai	2.6	2.7	2.8	2.9	2.6	-
APM (Maersk India) CFS, Navi Mumbai	2.0	2.3	1.9	2.0	2.0	-
Apollo Logisolutions CFS, Panvel	4.5	4.8	5.7	4.3	4.5	-
Ashte Logistics CFS, Panvel	3.1	2.8	2.9	2.8	2.7	2.0
Balmer & Lawrie CFS, Navi Mumbai	2.6	2.4	2.0	1.9	2.0	1.8
Continental Warehousing CFS, Navi Mumbai	2.0	1.9	2.1	1.8	1.6	-
CWC Conex Terminal CFS	2.3	2.4	2.7	2.4	2.1	2.7
CWC Dronagiri CFS, Navi Mumbai	2.5	2.2	2.0	2.9	2.0	1.2
CWC Impex Park CFS, Navi Mumbai	2.7	2.8	2.7	2.8	3.2	-
CWC Polaris logistics park	2.1	2.2	2.5	2.0	2.0	1.8
EFC Logistics India	1.7	2.5	2.2	2.3	2.0	-
Gateway Distriparks CFS, Navi Mumbai	3.6	3.3	3.5	2.8	2.5	-
International Cargo Terminal CFS	2.0	2.3	2.5	2.3	2.1	-
International Cargo Terminals (ULA) CFS, Navi Mumbai	2.2	2.4	2.2	1.9	2.0	-

CFS Delivery Time Analysis: CFS to JNPA Terminals (2/2)

CFS Out – Port In (Export Cycle) – Aug'25 (in hrs): Below table shows the delivery time in export cycle from the CFSs to PORT terminals

·					
NSFT	GTI	NSICT	NSIGT	вмст	NSDT
2.1	2.8	4.7	3.4	3.1	-
4.4	4.3	-	2.9	4.4	-
3.6	3.7	3.6	2.7	3.6	5.6
2.6	2.2	2.2	1.7	2.1	-
3.1	2.6	2.1	2.6	1.9	-
4.5	2.6	3.4	3.1	3.5	1.9
3.2	3.7	4.7	4.0	3.9	-
2.9	3.4	4.3	3.3	3.5	1.7
3.5	3.2	3.5	3.2	3.1	-
1.6	2.0	1.9	2.2	1.8	-
2.4	2.8	3.6	2.6	2.7	-
3.5	4.4	6.4	3.7	3.7	-
4.9	4.6	4.5	4.0	4.4	-
1.6	1.8	1.9	1.7	1.8	-
3.0	4.3	3.2	3.4	3.4	-
1.4	1.5	1.7	1.5	1.5	1.2
2.1	3.3	2.3	3.0	2.0	-
	2.1 4.4 3.6 2.6 3.1 4.5 3.2 2.9 3.5 1.6 2.4 3.5 4.9 1.6 3.0 1.4	2.1 2.8 4.4 4.3 3.6 3.7 2.6 2.2 3.1 2.6 4.5 2.6 3.2 3.7 2.9 3.4 3.5 3.2 1.6 2.0 2.4 2.8 3.5 4.4 4.9 4.6 1.6 1.8 3.0 4.3 1.4 1.5	2.1 2.8 4.7 4.4 4.3 - 3.6 3.7 3.6 2.6 2.2 2.2 3.1 2.6 2.1 4.5 2.6 3.4 3.2 3.7 4.7 2.9 3.4 4.3 3.5 3.2 3.5 1.6 2.0 1.9 2.4 2.8 3.6 3.5 4.4 6.4 4.9 4.6 4.5 1.6 1.8 1.9 3.0 4.3 3.2 1.4 1.5 1.7	2.1 2.8 4.7 3.4 4.4 4.3 - 2.9 3.6 3.7 3.6 2.7 2.6 2.2 2.2 1.7 3.1 2.6 2.1 2.6 4.5 2.6 3.4 3.1 3.2 3.7 4.7 4.0 2.9 3.4 4.3 3.3 3.5 3.2 3.5 3.2 1.6 2.0 1.9 2.2 2.4 2.8 3.6 2.6 3.5 4.4 6.4 3.7 4.9 4.6 4.5 4.0 1.6 1.8 1.9 1.7 3.0 4.3 3.2 3.4 1.4 1.5 1.7 1.5	2.1 2.8 4.7 3.4 3.1 4.4 4.3 - 2.9 4.4 3.6 3.7 3.6 2.7 3.6 2.6 2.2 2.2 1.7 2.1 3.1 2.6 2.1 2.6 1.9 4.5 2.6 3.4 3.1 3.5 3.2 3.7 4.7 4.0 3.9 2.9 3.4 4.3 3.3 3.5 3.5 3.2 3.5 3.2 3.1 1.6 2.0 1.9 2.2 1.8 2.4 2.8 3.6 2.6 2.7 3.5 4.4 6.4 3.7 3.7 4.9 4.6 4.5 4.0 4.4 1.6 1.8 1.9 1.7 1.8 3.0 4.3 3.2 3.4 3.4 1.4 1.5 1.7 1.5 1.5

JNPA Region: Cluster Analysis

Based on container movement between port and CFS in Mumbai region, all the CFSs have been grouped into 8 Clusters on the basis of their vicinity.

Below tables show all the clusters and the relevant data for GTI, NSFT and NSDT terminals

CFS Cluster : GTI Terminal CFS Cluster : NSFT Terminal CFS Cluster : NSDT Terminal

GTI terminal for month of Aug'25					NSFT terminal for month of Aug'25					NSDT terminal for month of Aug'25				
Clusters	No. of CFS's in Cluster	Distance from Port (Km)	Import cycle time (in Hrs)	Export cycle time (in Hrs)	Clusters	No. of CFS's in Cluster	Distance from Port (Km)	Import cycle time (in Hrs)	Export cycle time (in Hrs)	Clusters	No. of CFS's in Cluster	Distance from Port (Km)	Import cycle time (in Hrs)	Export cycle time (in Hrs)
Cluster 1	1	8	1.9	3.8	Cluster 1	1	8	1.6	4.1	Cluster 1	1	8	-	-
Cluster 2	6	13	2.6	3.3	Cluster 2	6	13	2.7	4.1	Cluster 2	6	13	1.8	-
Cluster 3	6	11	3.4	2.5	Cluster 3	6	11	2.8	4.6	Cluster 3	6	11	-	-
Cluster 4	1	13	3.3	3.4	Cluster 4	1	13	2.1	3.1	Cluster 4	1	13	-	-
Cluster 5	2	25	2.9	4.2	Cluster 5	2	25	2.7	4.2	Cluster 5	2	25	-	-
Cluster 6	6	25	3.3	4.4	Cluster 6	6	25	3.4	3.8	Cluster 6	6	25	1.9	2.6
Cluster 7	4	12	2.7	3.2	Cluster 7	4	12	2.6	4.6	Cluster 7	4	12	-	-
Cluster 8	1	34	4.4	-	Cluster 8	1	34	3.5	-	Cluster 8	1	34	-	-

JNPA Region: Cluster Analysis

Based on container movement between port and CFS in Mumbai region, all the CFSs have been grouped into 8 Clusters on the basis of their vicinity.

Below tables show all the clusters and the relevant data for NSICT, NSIGT and BMCT terminals

CFS Cluster: NSICT Terminal CFS Cluster: NSIGT Terminal CFS Cluster: BMCT Terminal

NSICT terminal for month of Aug'25				NSIGT terminal for month of Aug'25					BMCT terminal for month of Aug'25					
Clusters	No. of CFS's in Cluster	Distance from Port (Km)	Import cycle time (in Hrs)	Export cycle time (in Hrs)	Clusters	No. of CFS's in Cluster	Distance from Port (Km)	Import cycle time (in Hrs)	Export cycle time (in Hrs)	Clusters	No. of CFS's in Cluster	Distance from Port (Km)	Import cycle time (in Hrs)	Export cycle time (in Hrs)
Cluster 1	1	8	2.0	4.6	Cluster 1	1	8	1.7	2.3	Cluster 1	1	8	1.8	5.5
Cluster 2	6	13	2.4	6.2	Cluster 2	6	13	2.2	3.4	Cluster 2	6	13	2.2	5.8
Cluster 3	6	11	2.8	6.0	Cluster 3	6	11	3.3	3.0	Cluster 3	6	11	3.0	7.2
Cluster 4	1	13	2.3	6.1	Cluster 4	1	13	3.1	3.7	Cluster 4	1	13	2.0	6.9
Cluster 5	2	25	4.3	6.5	Cluster 5	2	25	3.3	3.5	Cluster 5	2	25	3.1	9.5
Cluster 6	6	25	3.9	8.0	Cluster 6	6	25	3.5	4.4	Cluster 6	6	25	3.5	7.6
Cluster 7	4	12	2.8	8.2	Cluster 7	4	12	2.9	3.5	Cluster 7	4	12	2.6	6.4
Cluster 8	1	34	6.4	-	Cluster 8	1	34	3.7	-	Cluster 8	1	34	3.7	-

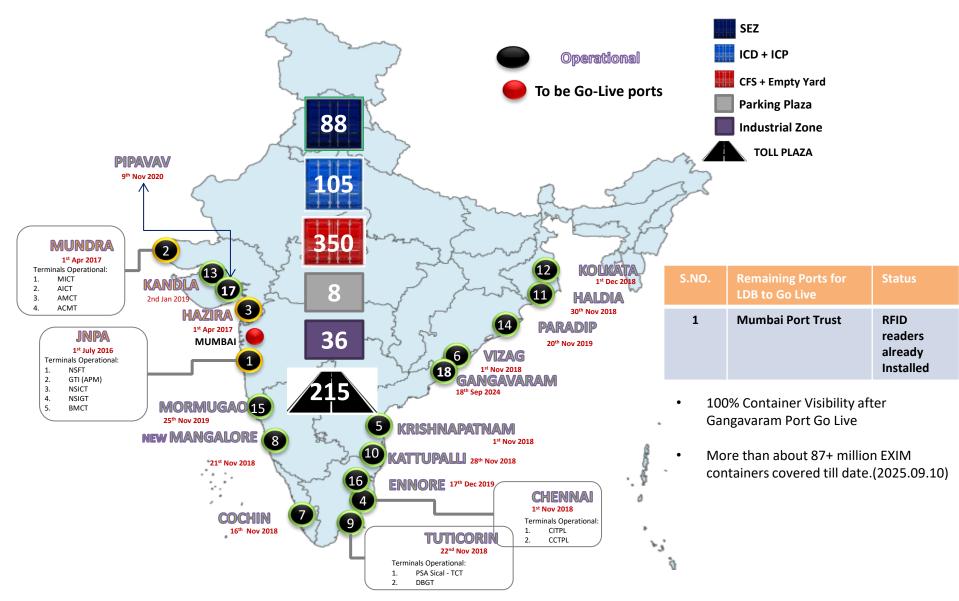
JNPA Region: Destination-wise Dwell Time-Import

The below table depicts Port Dwell Time Performance at JNPA Port for Train bound containers in Import Cycle based on the next destination city:

Destination-wise Dwell Time (in hrs) – Train for Aug'25

City	ВМСТ	GTI	NSFT	NSIGT	NSICT	Overall
Agra	43.1	-	-	19.9	-	68.5
Ankaleshwar	48.6	50.5	60.8	37.7	-	53.9
Dadri	43.2	-	65.8	77.5	82.9	47.8
Daulatabad	38.3	25.3	31.7	63.0	51.0	43.6
Indore	48.4	-	65.1	40.1	59.2	54.2
Kanpur	69.5	52.9	-	-	59.7	70.8
Khodiyar	77.4	45.6	34.5	66.8	75.3	72.7
Ludhiana	43.2	55.2	65.1	-	81.7	65.4
Mandideep	88.5	-	77.2	69.0	44.1	78.4
Moradabad	33.5	32.9	-	73.1	37.7	34.3
Nagpur	41.5	-	70.4	58.5	74.1	54.1
Navi Mumbai	50.4	38.7	22.3	44.6	-	40.0
Sanatnagar	52.0	-	56.4	44.2	-	46.2
Thimmapur	56.6	-	-	97.0	84.5	89.5
Tughlakabad	47.3	-	43.3	73.3	-	54.9
Umbergaon	-	-	-	-	77.1	77.1

JNPA Region: Destination-wise Dwell Time-Import


The below table depicts the Port Dwell Time Performance at JNPA Port for Truck bound containers in Import Cycle based on the next destination CFS:

Destination-wise Dwell Time (in hrs) - Truck for Aug'25

CFS	ВМСТ	GTI	NSFT	NSIGT	NSICT	Overall
AllCargo Logistics	22.1	-	-	24.1	28.5	23.4
Ameya Logistics CFS, Navi Mumbai	22.4	-	18.7	28.2	38.7	25.1
APM (Maersk India) CFS, Navi Mumbai	28.7	18.4	16.4	25.5	-	44.7
Apollo Logisolutions CFS, Panvel	25.3	17.4	17.0	20.6	21.3	20.5
Ashte Logistics CFS, Panvel	15.0	13.1	-	25.9	20.3	16.0
Balmer & Lawrie CFS, Navi Mumbai	29.3	20.8	19.6	27.7	20.2	24.0
Continental Warehousing CFS, Navi Mumbai	20.5	21.0	21.3	27.0	-	22.2
CWC Impex Park	25.4	18.5	27.3	28.4	47.6	24.5
Dronagiri Rail Terminal CFS, Navi Mumbai	18.0	17.4	15.1	21.8	-	18.2
EFC Logistics	15.3	13.4	15.1	20.3	19.5	15.6
Gateway Distriparks CFS, Navi Mumbai	20.0	16.3	17.0	28.2	31.0	21.0
International Cargo Terminals (ULA) CFS, Navi Mumbai	-	-	-	25.3	22.4	23.9
JWC Logistics Park CFS	21.1	13.8	15.9	23.2	19.9	18.6
Kerry Indev Logistics Pvt Ltd CFS	-	-	19.1	24.0	13.5	22.2
Maharashtra State Corp CFS	20.8	21.0	43.9	23.9	43.8	23.6
Navkar Corporation	19.6	16.2	17.2	33.9	28.1	20.0
Ocean Gate CFS, Panvel	17.2	14.4	15.5	22.7	30.8	17.3
Sarveshwar Logistics	15.3	16.1	-	16.1	20.4	16.7
SBW Logistics CFS, Navi Mumbai	48.0	-	48.4	47.7	-	48.0
Seabird CFS, Navi Mumbai	41.4	-	23.6	54.5	63.2	47.0
Speedy Multimode CFS, JNPT	16.7	-	-	20.0	21.6	18.3
Take Care Logistics	22.5	-	-	-	33.8	25.0
TG Terminals	25.7	-	21.4	22.5	30.0	25.5
Vaishno Logistics CFS, Navi Mumbai	21.0	29.9	36.4	36.0	33.2	28.9

LDB Operations Snapshot (1/2)

LDB Operations Snapshot (2/2)

Below mentioned are all the CFS in the respective Clusters:

Cluster 1

(JNPA Area)

Speedy Multimode CFS, JNPA

Cluster 2

(Bhendkhal area, Khopate road)

- APM (Maersk India) CFS, Navi Mumbai
- Maersk Annex (APM)CFS, Navi Mumbai
- Balmer & Lawrie CFS, Navi Mumbai
- CWC Hind Terminal CFS, Navi Mumbai
- International Cargo Terminals (ULA)
 CFS, Navi Mumbai & Infrastructure
 Private Limited
- Gateway Distriparks CFS, Navi Mumbai
- International Cargo Terminal CFS

Cluster 3

Sonari area, JNPA road

- Punjab Conware CFS, Navi Mumbai
- Dronogiri Rail Terminal CFS, Navi Mumbai
- CWC Impex Park CFS, Navi Mumbai
- CWC Dronagiri CFS, Navi Mumbai
- Maharashtra State Corp CFS
- Seabird CFS, Navi Mumbai

Cluster 6

(Salva apta rd area, Bangalore highway)

- Ashte Logistics CFS, Panvel
- Apollo Logisolutions CFS, Panvel
- Indev Logistics CFS, Panvel
- Navkar Corporation Yrd 1 CFS, Panvel
- Navkar Corporation Yard 2 CFS, Panvel
- Navkar Corporation Yard 3 CFS, Panvel

Cluster 4

(Chirle area, JNPA road)

• Vaishno Logistics CFS, Navi Mumbai

Cluster 5

(Plaspa area, Coachi kanyakumari Highway)

- JWC Logistics Park CFS
- Ocean Gate CFS, Panvel

Cluster 7

(Patilpada area, Khopate JNPA road)

- All Cargo Logistics CFS, Navi Mumbai
- Transindia Logistics Park, Navi Mumbai
- Ameya Logistics CFS, Navi Mumbai
- Continental Warehousing CFS, Navi Mumbai

Cluster 8

SBW

Annexure: Western Region CFS

List of CFS names used in the Western CFS Performance Index

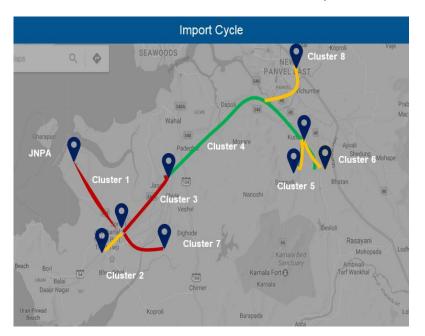
	List of Cr 5 harries asca in the Western Cr 5 i Crioinfance mack								
Ref. No.	Name	Ref. No.	Name						
1	Adani CFS Eximyard, Mundra	21	APM (Maersk India) CFS, Navi Mumbai						
2	CWC Polaris logistics park	22	Continental Warehousing CFS, Navi Mumbai						
3	CWC Conex Terminal CFS	23	Rishi CFS, Mundra						
4	Gateway Distriparks CFS, Navi Mumbai	24	Balmer & Lawrie CFS, Navi Mumbai						
5	JWR CFS	25	Adani CFS, Hazira						
6	International Cargo Terminals (ULA) CFS, Navi Mumbai	26	Transworld Terminals CFS, Mumbai						
7	Ameya Logistics CFS, Navi Mumbai	27	Maharashtra State Corp CFS						
8	Seabird CFS, Mundra	28	Sarveshwar CFS						
9	Punjab Conware CFS, Navi Mumbai	29	Ocean Gate CFS, Panvel						
10	Seabird CFS, Navi Mumbai	30	Navkar Corporation Yard 2 CFS, Panvel						
11	Speedy Multimode CFS, JNPT	31	CWC Impex Park CFS, Navi Mumbai						
12	EFC Logistics India	32	Maersk Annex (APM)CFS, Navi Mumbai						
13	CWC Dronagiri CFS, Navi Mumbai	33	TG Terminals CFS, Mundra						
14	JWC Logistics Park CFS	34	AllCargo CFS, Mundra						
15	International Cargo Terminal CFS	35	Apollo Logisolutions CFS, Panvel						
16	Navkar Corporation Yard 3 CFS, Panvel	36	Take Care Logistics CFS						
17	AllCargo Logistics CFS, Mumbai	37	Navkar Corporation Yard 1 CFS, Panvel						
18	Ashte Logistics CFS, Panvel	38	Kerry Indev Logistics CFS, Mumbai						
19	Landmark CFS, Mundra	39	Vaishno Logistics CFS, Navi Mumbai						
20	Hind Terminal CFS, Hazira	40	CWC CFS, Mundra						

Annexure: Congestion Analysis & Methodology

Methodology

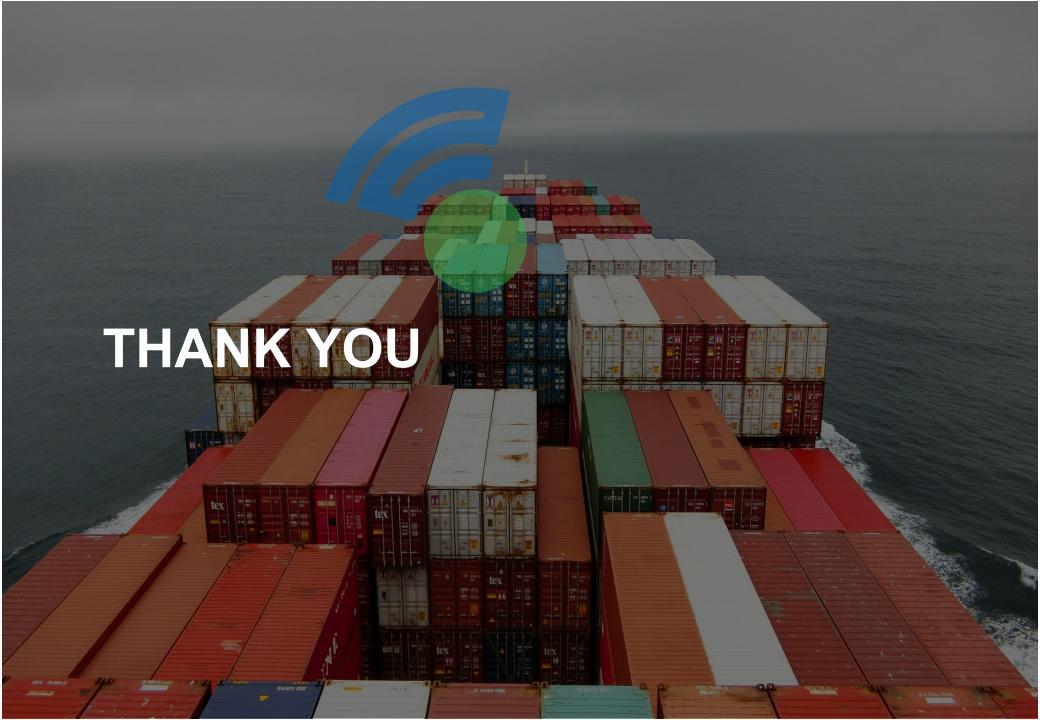
Step 1

CFSs are divided into clusters based on their vicinity


Step 2

Cluster based transit time is calculated. The transit time is the travel time between CFS clusters and port or vice versa.

Step 3


Cluster based congestion level is calculated as per below steps:

- Cluster based transit time is compared with threshold
- 2. Threshold is 3X of time showcased on Google Maps between the Origin-Destination (OD) pair
- Intensity of congestion is classified as below:
 - High congestion: >2 times the threshold
 - Medium congestion: >1.5 to <=2 times the threshold
 - Low congestion: >1 to <=1.5 times the threshold

Congestion Analysis

Congestion Level High Medium Low

